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Phase Transitions in the Ashkin-Teller Model 
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For some values of the coupling constants, a proof of the existence of two phase 
transitions in the Ashkin-Teller model is given. Only correlation inequalities are 
used. 
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Some years ago, Wegner  published a note (1) on the Ashkin-Tel ler  model  (2) 
in which he pointed out that  there are two phase transitions with symmetry  
breakdown for some values of the coupling constants. I would like to give a 
proof  of the above statement, which is based on Griffiths inequalities [see 
(A.1) and  (A.2) of the Appendix].  In  the spin language, the model  can be 
described as follows: for each site x of the lattice 7/s, d />  2, there are two 
independent  spin variables o ( x )  -- _ 1 and  ~-(x) = + 1. The Hamil tonian  is 

H = - ~ X,o(x)o(y) + X~T(x)~(y) + X2a(x)~(y)T(x)T(y ) (I) 
<xy> 

where <xy> denotes a pair  of nearest neighbors on the lattice. The coupling 
constants  are positive and without  loss of generality X 2 = 1. The internal 
symmetry  group G contains four elements: the identity I, the t ransforma- 
tion Io, r e s p . / , ,  which reverses all spins o(x ) ,  resp. ~'(x), and the transfor- 
mat ion  I o �9 I~, which reverses all spins. There are three subgroups in G: 
G 1 = { I ,  Io �9 I~}, G 2 = ( I , I ~ }  and G 3 = ( I , / , } .  At  high temperature there is 
a unique equilibrium state, which is of course G invariant. Let X 1 + X' l < 1. 
In  this case, there are two phase transitions with symmetry  breakdown at 
T l and at T 2 < T~. At  the first transition the symmetry  group G is broken,  
but  not  completely:  there exists an equilibrium state <. >+ such that 
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(o(x) ,r(x))  + > 0 for all T < T 1 . The spins o(x) and ~-(x) become positively 
correlated in the state ( . ) + .  However, all equilibrium states a r e  G 1 

invariant for T 2 < T < T 1 . In particular, @ ( x ) )  + = (~-(x)) + = 0, since the 
observables o(x) and ~-(x) are not G 1 invariant. At the second phase 
transition the subgroup G 1 is broken and ( o ( x ) )  + > 0, (~-(x)) + > 0. Let 
X l > X] + 1. For this choice of the coupling constants there are again two 
phase transitions at T 3 and at T 4 < T 3. At the first transition the group G is 
partially broken: ( o ( x ) )  + > 0 for all T < T 3, but all equilibrium states are 
G 3 invariant for T 4 < T < T 3. In particular, (~-(x)) + = (o(x) 'r (x))  + = O. 
At the second phase transition the subgroup G 3 is broken and (~-(x)) + > 0, 
(o ( x ) , r ( x ) )+> 0. A similar situation occurs for )t' 1 > X 1 + 1, where the 
group G is partially broken at the first phase transition, all equilibrium 
states being G 2 invariant up to the second phase transition. 

Using the results of Lebowitz, (3) one can prove, for (almost) all 
temperatures, that there are two pure phases between T 2 < T < T I ,  resp. 
T 4 < T < T2, and four pure phases below T 2 and T 4. We recall that a pure 
phase is an extremal translation-invariant equilibrium state. Therefore all 
translation-invariant equilibrium states are convex combinations of two, 
resp. four, equilibrium states. The state ( �9 ) + is always a pure phase. Below 
T 2 or T 4 the other pure phases are obtained by the action of the group G on 
( �9 )+ and therefore the pure phases are naturally labeled by the elements 
of G. In the case X 1 + X'I < 1, the two pure phases between T 2 < T < T 1 are 
labeled by the elements of the quotient group G / G  t, since the actions of Io 
and I ,  on ( �9 )+ give the same pure phase. Similarly, for )tj > X] + 1, and 
for T 4 < T < T 3, the two pure phases are labeled by the elements of G / G  3. 

Remarks. If )k 1 = ~.~,  the internal symmetry group is larger than the 
group G defined above. Indeed, the system is invariant under the symmetry 
transformation which exchanges o(x) and z(x) for all x. Therefore the 
symmetry group contains eight elements. However, the pure phases, at low 
temperature, are still labeled by the subgroup G. This is typical for 
ferromagnetic Abelian spin systems. (4) 

Proofs. (a) Construction of the State ( . ) + .  This is a standard 
construction. Let A be a finite subset of Z a. Let ( . ) ~  be the Gibbs state 
for the finite volume A with + boundary condition. In other words, ( �9 )~  
is the Gibbs state defined, as usually, by the Hamiltonian given by (1), 
where the sum is restricted over all ( x y )  such that at least one element 
belongs to A, and if x f~ A, o(x) = 1. For any finite subset A of A, let 
o A = I-lxeAO(x). By correlation inequality (A.1), (OA)~, >1 (OA)d~>>-0 if 

+ 
A l c A 2. Therefore limA(aA) A = (oA) + exists, when A tends to xc , ior any 
finite A. These limits define an extremal translation-invariant equilibrium 
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state ( . ) + .  The state ( . ) +  has two important properties. From (A.1), 
<OA) ~ ) <o4)fA, where <. )fA is the Gibbs state defined in A with free 
boundary condition. [In the Hamiltonian (1) the sum is restricted over all 
(xy) inside A.] Since (o4)fa, ,<< (o4)~2 for A 1 c A2, one has (o(x)o(y)) + 
> 0 and <~-(x),(y)) + > 0 for all <xy). Using (A.2), one sees that (04) + 
> 0 for all finite A, such that 04 can be written as a product of o(x)o(y) 
and ~'(x)~'(y) for different <xy). It is not difficult to see that these 
observables are exactly those o 4 which are G invariant. Let <. ) be any 
equilibrium state. If <oA) + = 0, then <o4)=  0. This follows from the fact 
that all equilibrium states can be expressed as convex combination of 
equilibrium states obtained by suitable boundary conditions. The above 
property is true for these states as a consequence of (A.1). In particular, at 
high temperature, (04) = 0 for any observable 0.4, which is not G invariant, 
and for any equilibrium state. 

(b) X 1 + X' 1 < 1. Using (A.1) (o(x)'r(x)) + (X~,X'~) >~ <o(x)r(x))  + (0,0). 
Therefore the Hamiltonian on the right-hand side of this inequality is given 
by (1) with X~ = X] = 0 and X 2 = 1. It is not difficult to see that <o(x) 
~-(x)) + (0,0) = <o(x))[(1), where <- ) [ (1)  denotes the state with + bound- 
ary condition of the Ising model 

n = -   o(x)o(y) (2) 
<xy> 

with coupling constant/~ = 1. Let To(Is ) be the critical temperature of the 
Ising model with/~ = 1. Therefore <o(x),r(x)) + ()h,X]) > 0 for T < To(Is). 
On the other hand, <o(x)> + (Xl,k]) < @(x)>[(X l + X]). A similar inequal- 
ity holds for (~-(x)>+(Xj,X]). Indeed by adding -h~xo(x)~r(x ) to (1) 
and letting h-->oo, o(x)= ~'(x) in this limit. Thus 0 < <o(x)>+ (X,,X])+ 
<~-(x)> + (X1,X]) < 2<o(x)>+(~), with ~ = )'1 + X] < 1. Therefore <o(x)> + 
()~l,X]) = <~-(x)> + (Xl,X]) = 0 for all temperatures T > ~ .  T~(Is). Using the 
properties of ( .  >+ and correlation inequality (A.2), one sees that (o4)  + 
> 0 if and only if o 4 is G l invariant, for all T 2 < T < Tl, where T 1 > T~(Is) 
and T 2 < ~ �9 T~(Is). Therefore all states are G 1 invariant for these tempera- 
tures. 

(c))'1 > X] + 1. Clearly (A.1) implies <o(x)) + (;k,,A]) > <o(x))[(X 0 
> 0 if T < )h T~(Is). Let ( r (x )  ] o) be the conditional expectation value of 
r(x), given the values of o(y)  for ally.  In other words, one keeps the values 
of o(y)  fixed, and sums over all variables ~-(y). By (A.1) this quantity is 
dominated by its value for o(y)= 1 for all y ,  which is equal to <r(x))[ 
(X] + 1). Since <~'(x)) + = <(r(x)[o)) +, ( r ( x ) )  + < <~-(x))]()t' l + 1). 
Therefore <~-(x)) + = 0 for all T > (1 + ~ ) -  T~(Is). Since <~'(x)) + = <o(x) 
o(x)'r(x))+> <o(x)'r(x))+<o(x)) +, one also has (o(x)z(x) )  + = 0  for 
T > (1 + ~'0" T~(Is). The rest of the proof is analogous to the former case. 

II 
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APPENDIX: GRIFFITHS INEQUALITIES 

Let A be a finite subset of ;Y~, and  let ( . ) ( J )  be the Gibbs  state in A 
given by the Hami l ton ian  

H = -  ~ J ( A ) o  A 
AcA 

The set of all coupling constants  J ( A )  is denoted by  J.  The  following 
correlat ion inequalities hold: 

(a) If IJl(A)[ < J2(A) for all A C A, 

[ (oe ) ( J t )  1 < (OB)(J2) (A. t )  

(b) If J ( A )  >1 0 for all A C A, 

(OBOC)(J) >/ ( O B ) ( J ) ( o c ) ( J )  ( a .2 )  

For  a proof  see, e.g., Ref. 5. 
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